Егорова Надежда Сергеевна

ПРИЁМЫ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ ЛЬНА МАСЛИЧНОГО В УСЛОВИЯХ НЕЧЕРНОЗЁМНОЙ ЗОНЫ РОССИИ

Специальность 06.01.01 – общее земледелие, растениеводство

Автореферат диссертации на соискание учёной степени кандидата сельскохозяйственных наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Рязанский государственный агротехнологический университет имени П.А. Костычева (ФГБОУ ВО РГАТУ)

Научный руководитель: Виноградов Дмитрий Валериевич

доктор биологических наук

Официальные оппоненты: Сорокина Ольга Юрьевна,

доктор сельскохозяйственных наук,

ФГБНУ «Всероссийский научно - исследова-

тельский институт льна» ФАНО России,

руководитель отдела земледелия

Авдеенко Алексей Петрович,

доктор сельскохозяйственных наук, доцент, ФГБОУ ВО «Донской государственный аграрный университет», заведующий кафедрой земледелия и технологии хранения растениеводче-

ской продукции

Ведущая организация: Федеральное государственное бюджетное обра-

зовательное учреждение высшего образования «Ижевская государственная сельскохозяйствен-

ная академия».

Защита состоится «17» апреля 2018 года в 11^{00} часов на заседании диссертационного совета Д 999.091.03 диссертационного совета Д 999.091.03 на базе ФГБОУ ВО «Самарская государственная сельскохозяйственная академия», по адресу: 446442, Самарская область, г. Кинель, п.г.т. Усть-Кинельский, ул. Учебная, 2; тел./факс 8-(846-63)-46-1-31.

С диссертацией можно ознакомиться в библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «Самарская государственная сельскохозяйственная академия» и на сайте www.ssaa.ru

Автореферат разослан «	»	2018	года
	· ———		

Ученый секретарь

диссертационного совета

Троц Наталья Михайловна

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. В настоящее время возрос интерес сельхозпроизводителей к масличным культурам, связанный с высоким спросом и высокой закупочной ценой на маслосемена этих культур. Основными масличными культурами выращиваемыми в Нечернозёмной зоне России стали подсолнечник и яровой рапс. Масличный лен еще не получил достаточной популярности в Тульской области, но может стать альтернативной культурой для подсолнечника по потреблению, а для ярового рапса по размещению в севообороте. Преимуществами масличного льна являются засухоустойчивость и короткий вегетационный период. Лен масличный не уступает по прибыльности другим масличным культурам и выступает значительно более лучшим предшественником (Наумчик Д.А., 2004, Гайнуллин Р.М., 2011, Лукомец В.М., 2012, Гореева В.Н., 2016). Отсутствие в Нечерноземной зоне России вредителей и болезней этой культуры позволяет сократить прямые затраты на инсектициды и фунгициды (Поляков А.В., 2012, Кунцевич А.А., 2013, Виноградов Д.В., 2015).

Посевная площадь льна масличного в Тульской области в 2014 году составила всего 1300 га, в 2015 – 2040 га, в 2016 – 4728 га. В условиях региона урожайность льна масличного может достигать до 2,5-2,8 т/га. Одной из основных причин снижения урожайности культуры является засорённость полей. В то же время, гербициды в основном изучены и зарегистрированы для применения их в посевах льна-долгунца, поэтому вопрос подавления сорняков в посевах льна масличного подлежит дальнейшему исследованию.

Важным вопросом является изучение и отбор высокопродуктивных для Тульской области сортов льна масличного. Внедрение новых сортов, в свою очередь, требует более детального изучения технологии их возделывания, в том числе определения оптимальной нормы высева, срока посева, уровня минерального питания, применения листовой подкормки, для конкретных почвенно-климатических условий.

Исследования, направленные на изучение эффективности различных видов удобрений и гербицидов, а также элементов технологии возделывания льна масличного на маслосемена в конкретных почвенно-климатических условиях являются весьма актуальными, что и положено в основу наших исследований.

Цель исследований — изучить особенности формирования продуктивности льна масличного, и оптимизировать основные элементы сортовых технологий для получения высокой и стабильной урожайности маслосемян в условиях Тульской области.

Задачи исследований:

- 1. Выявить влияние гербицидов и органо-минеральных удобрений на продуктивность льна масличного.
- 2. Установить наиболее эффективную норму высева сортов льна масличного.

- 3. Определить оптимальный срок посева для различных сортов льна масличного и гербицидной обработки.
- 4. Дать оценку биохимического (в том числе жирнокислотного) состава семян льна масличного в зависимости от изучаемых факторов.
- 5. Дать экономическую оценку эффективности использования элементов сортовых технологий возделывания льна масличного.

Объект исследований — лен масличный; почва серая лесная; сорные растения и биоценоз в целом.

Научная новизна. Впервые в условиях Тульской области разработаны приёмы повышения продуктивности льна масличного и определены оптимальные условия его возделывания.

Доказана высокая эффективность внекорневой обработки льна масличного органо-минеральными и водорастворимыми минеральными удобрениями.

Выявлены в условиях региона, с целью увеличения производства и улучшения качественных характеристик сортов льна масличного, разработаны и экспериментально обоснованы наиболее эффективные технологические приемы производства культуры: срок посева, норма высева, гербициды и органоминеральные удобрения. Предложены рекомендации производству.

Реализация работы и ее практическая значимость. Внедрение результатов исследований проводилось на полях ООО «Спасское» и АПК имени Стародубцева В.А. Новомосковского района Тульской области, агротехнологической опытной станции ФГБОУ ВО РГАТУ, ООО «Авангард» Рязанской области.

Рекомендации и результаты исследований используются в качестве методических пособий в учебном процессе по курсам «Растениеводство», «Земледелие», «Производство продукции растениеводства» в ФГБОУ ВО РГАТУ с 2014 года. Исследования выполнялись в соответствии с программой НИОКР ФГБОУ ВО РГАТУ.

Методология и методы исследований. Методология исследований основана на анализе научных работ; оценке природно-климатических и почвенных исследований; приёмов совершенствования элементов технологии возделывания льна; в постановке цели, задач и программы исследований; постановке полевого эксперимента; проведение исследований и наблюдений; статистической обработке экспериментальных данных и анализа результатов.

Степень достоверности и апробация работы подтверждена большим объемом экспериментальных данных, полученных в полевых и лабораторных исследованиях, научно-обоснованной организацией опытов. Основные положения диссертационной работы представлены и доложены на заседаниях кафедры агрономии и агротехнологий; ежегодных конференциях профессорскопреподавательского состава ФГБОУ ВО РГАТУ (2013-2017); на международных конференциях и форумах «Почвы Азербайджана: генезис, география, мелиорация, рациональное использование и экология» (Баку-Габала, Азербай-

джан, 2012); «Экологическое состояние природной среды и научно-практические аспекты современных мелиоративных технологий» (Москва-Рязань, 2012); «Научно-практические аспекты технологий возделывания переработки масличных культур» (Рязань, РГАТУ, 2013); «Развитие АПК на основе рационального природопользования: экологический, социальный и экономический аспекты» (Полтава, Украина, 2014); «Технологические аспекты возделывания сельскохозяйственных культур» (БГСХА, Беларусь, 2015); «Научно-практические аспекты технологий возделывания и переработки масличных и эфиромасличных культур» (РГАТУ, Рязань, 2016); «Экологическое состояние природной среды и научно-практические аспекты современных ресурсосберегающих технологий в АПК» (РГАТУ, Рязань, 2017); «Технологические аспекты возделывания сельскохозяйственных культур» (БГСХА, Горки, Беларусь, 2017), «Здоровая окружающая среда – основа безопасности регионов: сборник трудов I международного экологического форума в г. Рязани» (РГУ имени С.А. Есенина, 2017).

Основные положения выносимые на защиту:

- 1. Влияние гербицидов и органо-минеральных удобрений на продуктивность льна масличного.
 - 2. Эффективность норм высева сортов льна масличного.
- 3. Влияние сроков посева для различных сортов льна масличного при использовании гербицида.
- 4. Биохимический состав семян льна масличного в зависимости от изучаемых факторов.
- 5. Экономическая оценка эффективности использования элементов сортовых технологий возделывания льна масличного.

Объем и структура диссертации. Работа изложена на 144 страницах компьютерного текста, состоит из введения, 6 глав, основных выводов и предложений производству, списка использованной литературы из 164 источников, в том числе 25 зарубежных авторов, содержит 21 таблицу, 15 рисунков и 28 приложений.

Публикации результатов исследований. По результатам исследований опубликовано 22 печатные работы, в том числе 6 статей в журналах, включённых в перечень ВАК РФ.

Личный вклад автора. Автор принял непосредственное участие в разработке программы исследований, проведения полевых опытов и лабораторных исследований, обработки полученных результатов и представлении их на конференциях, семинарах, в методических указаниях. Диссертационная работа подготовлена на основе обобщения результатов исследований, проведенных лично автором.

2. СОДЕРЖАНИЕ РАБОТЫ

Условия и методика проведения исследований. Исследования проведены в ООО «Спасское» Новомосковского района Тульской области в период с 2013 по 2016 год.

Климат умеренно-континентальный, с умеренно холодной зимой, тёплым летом и ясно выраженными сезонами года. Тёплый период длится 210–218 дней, безморозный период около 155 дней. Сумма активных среднесуточных температур выше 10°С за период вегетации растений колеблется от 2120 до 2260°С. Годовое количество осадков составляет 555-665 мм. За вегетационный период их выпадает 365–435 мм. Метеоусловия вегетационных периодов за годы опытов: 2015, 2016 — характеризовались нормальным увлажнением и температурным режимом (ГТК - 0,9 в 2015 и 1,4 в 2016), 2014 — сильно засушливый и жаркий (ГТК -0,7), 2013 — сильно дождливый и тёплый (ГТК -1,8).

Опыты закладывали на серой лесной почве, со следующими агрохимическими показателями: pH 5,4-5,7; содержание органического вещества 5,7-5,9%; подвижный фосфор $(P_2O_5)-477-522$ мг/кг, подвижный калий (K_2O) – высокое 110-123 мг/кг; общий азот - 0,20-0,24%.

Опыт 1. Влияние гербицидных и органо-минеральных обработок на продуктивность льна масличного. Схема двухфакторного опыта включала четыре варианта по фактору А (использование различных гербицидов при возделывании льна масличного): 1.контроль (без использования гербицида и удобрений); 2.использование гербицида Агритокс 1л/га; 3.использование гербицида Хакер 120 г/га; 4.использование смеси гербицидов Хакер 60 г/га + Магнум 5 г/га, и шесть вариантов по фактору В (использование различных органо-минеральных и водорастворимых минеральных удобрений в качестве листовой подкормки при возделывании льна масличного): 1.использование Нутримикса 1кг/га; 2.использование Аминокат-30 0,3л/га; 3.использование Биоплант Флора 1л/га; 4.использование Лигногумата 60г/га + Мивал Агро 10 г/га; 5.использование Нутрибора 1кг/га; 6.использование Азосола 4л/га. Посевная площадь делянки 25 м², учётная 20 м². Повторность четырёхкратная.

Опыт 2. Влияние нормы высева на продуктивность сортов льна масличного. Схема двухфакторного опыта включала два варианта по фактору А (сорта): 1.сорт ВНИИМК-620; 2.сорт Санлин, и пять вариантов по фактору В (норма высева): 1.норма высева 6 млн. всхожих семян/га; 2.норма высева 8 млн. всхожих семян/га; 3.норма высева 10 млн. всхожих семян/га; 4.норма высева 12 млн. всхожих семян/га. Посевная площадь делянки 25 м², учётная 20 м². Повторность четырёхкратная.

Опыт 3. Влияние сроков посева и гербицидной обработки на урожайность сортов льна масличного. Схема трёхфакторного опыта включала по фактору А (сорта): 1.сорт ВНИИМК-620; 2.сорт Санлин; по фактору В (гербицид): 1.контроль (без гербицида); 2.использование гербицида Агритокс, 1л/га; и три

варианта по фактору C (срок посева льна масличного): 1срок посева-третья декада апреля; 2.срок посева-первая декада мая; 3.срок посева - вторая декада мая. Посевная площадь делянки 25 м², учётная 20 м². Повторность четырёх-кратная.

Агротехнические мероприятия. Осенняя зяблевая вспашка на глубину 22-24 см, ранневесеннее боронование БЗСС-1,0, культивация на глубину 12-14 см, предпосевная культивация на глубину заделки семян 2 см. Под предпосевную культивацию вносились минеральные удобрения в дозе N_{60} д.в./га, использовали аммиачную селитру. Посев сплошным рядовым способом, сеялкой Kverneland 6000 в агрегате с John Deere 8335r.

В опыте 1 и 3 норма высева - 8 млн. всхожих семян/га, в опыте 2 – согласно схеме. Обработка гербицидами и листовая подкормка жидкими органоминеральными и водорастворимыми минеральными удобрениями в опыте 1 проводилась в фазу «ёлочки» в баковой смеси. Обработку вели с помощью опрыскивателя Kwazar «NEPTUNE 15». Для борьбы с крестоцветной блошкой в фазу «ёлочки» проводили обработку инсектицидом Брейк (0,06 л/га), расход рабочей жидкости 300 л/га. В опыте 2 и 3 обработку инсектицидом проводили в баковой смеси с гербицидом Агритокс 1 л/га. Для обработки использовался опрыскиватель ОПШ-15 в агрегате с трактором МТЗ-82. Уборку посевов проводили механизированно – комбайном «Дон-1500 Б» и вручную в фазу полной спелости. Все агротехнические приёмы проводились в максимально приближенные оптимальные сроки.

Все наблюдения, учеты и анализы проводили по общепринятым методикам и ГОСТам. Математическую обработку данных проводили методом дисперсионного анализа по Р. Фишеру в изложении Б. А. Доспехова (1985) на ПЭВМ. Учёт засорённости посевов проводили согласно принятым «Методическим указаниям по полевому испытанию гербицидов в растениеводстве» 2013 г.

При выборе пестицидов, для обработки льна масличного, использовали «Список пестицидов, разрешённых к применению в Российской Федерации».

Агрохимические исследования выполнены в лабораториях Государственной станции агрохимической службы «Рязанская», ООО «МНТЦ» (г. Рязань). Массовую долю подвижного фосфора и калия определяли по ГОСТ 54650-2011, общего азота по ГОСТ 26107-84, органического вещества по ГОСТ 26213-91, рН, единицы по ГОСТ 26483-85.

Жирнокислотный состав определяли методом газожидкостной хроматографии (Л. Н. Харченко, 1985) по ГОСТ Р 51483-99 в лаборатории ООО «Орёлрастмасло».

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1 Влияние гербицидов и органо-минеральных удобрений на продуктивность семян льна масличного

Растения льна масличного сорта ВНИИМК-620 характеризовались средней высотой и густой облиственностью. Максимальный рост растений льна наблюдался в межфазный период от фазы «ёлочка» до фазы цветения.

Чёткой закономерности влияния гербицидов и органоминеральных удобрений на высоту растений не прослеживалось. Лишь при использовании листовой подкормки Аминокат-30 и Биоплант Флора высота растений уменьшилась, в среднем на 2 см, по сравнению с вариантами без подкормки.

Подкормка льна масличного органо-минеральными и водорастворимыми минеральными удобрениями оказала влияние на продолжительность межфазного периода от цветения до созревания, продлив его на 1-3 дня. Применение гербицидов при возделывании льна, напротив уменьшало период вегетации, в среднем на два дня, по сравнению с контролем. В среднем за годы исследований вегетационный период льна составил от 89 до 93 дней.

Густота растений к уборке была выше на вариантах опыта с использованием гербицидов и органо-минеральных удобрений. Сохранность растений к уборке при применении гербицидов увеличивалась на 10,1-11,4%, а при обработке органо-минеральными удобрениями на 11-12,9%.

Урожайность льна масличного формировалась за счёт не только густоты стояния растений перед уборкой, но и количества коробочек на растении, числа семян в коробочке и массы 1000 семян.

Результаты, полученные за три года исследования, показывают, что гербицидные обработки оказали положительное влияние на структуру урожая.

Максимальные показатели структуры урожая - при применении смеси гербицидов Хакер (60 г/га) + Магнум (5 г/га): число коробочек на растении больше на 0,3 шт. чем на контроле (без гербицидной обработки), а масса тысячи семян на 0,3 г.

Использование в технологии возделывания гербицидов являлось обязательным условием получения высоких урожаев и качественных льносемян. За годы исследований максимальную прибавку урожая показали гербицид Агритокс (1 л/га) – 0,46 т/га и баковая смесь гербицидов Магнум (5 г/га) + Хакер (60 г/га) – 0,42 т/га (табл. 1).

В опыте с листовой подкормкой органо-минеральными удобрениями (Аминокат-30, Лигногумат + Мивал-Агро, Биоплант Флора, Азосол) и водорастворимыми минеральными удобрениями (Нутримикс и Нутрибор) нанесённые на листья питательные вещества быстро поглощались эпидермальными клетками и перемещались в стебли и плоды, вовлекаясь в процессы обмена.

Таблица 1 – Урожайность льна масличного в зависимости от используемого варианта гербицидной обработки и обработки удобрением.

Вариант опыта		2013 2014 2015		Сред-	Прибавка		
					RRH	т/га	%
Контроль (без гербицида и		1,41	1,85	1,17	1,48	-	-
удобрения)							
Агритокс,	без удобрения	1,61	2,63	1,57	1,94	0,46	23,7
1 л/га	Нутримикс	2,06	3,03	1,79	2,29	0,81	35,4
	Аминокат	2,59	3,00	1,85	2,48	1,00	40,3
	Биоплант Флора	2,37	2,97	1,79	2,38	0,90	37,8
	Лигногумат	1,64	2,87	1,72	2,08	0,60	28,8
	Нутрибор	2,24	2,89	1,85	2,33	0,85	36,5
	Азосол	1,78	2,72	2,04	2,18	0,70	32,1
Хакер,	Без удобрения	1,49	1,90	1,25	1,55	0,07	4,5
120 г/га	Нутримикс	1,78	2,22	1,38	1,79	0,31	17,3
	Аминокат	2,69	2,18	1,61	2,16	0,68	31,5
	Биоплант Флора	2,35	2,33	1,55	2,08	0,60	28,8
	Лигногумат	1,56	2,43	1,43	1,81	0,33	18,2
	Нутрибор	1,99	1,94	1,58	1,84	0,36	19,6
	Азосол	1,73	2,39	1,51	1,88	0,40	21,3
Хакер,	Без удобрения	1,73	2,47	1,51	1,90	0,42	22,1
60 г/га +	Нутримикс	2,22	3,40	1,79	2,47	0,99	40,1
Магнум,	Аминокат	2,65	3,38	1,91	2,65	1,17	44,2
5 г/га	Биоплант Флора	2,76	3,47	1,95	2,73	1,28	46,9
	Лигногумат	1,99	2,67	1,95	2,20	0,72	32,7
	Нутрибор	1,96	3,04	1,52	2,17	0,69	31,8
	Азосол	1,80	3,00	1,88	2,23	0,75	33,6
НСР от т/га пля частных различий							

НСР 05 т/га, для частных различий

Это позволяло не только ускорить рост растений, но и воздействовать на обмен веществ, изменяющий химический состав.

Согласно данным, полученным за годы исследований, все виды удобрений оказали положительное влияние на элементы структуры урожая.

В исследованиях лучшим из изучаемых органо-минеральных и водорастворимых минеральных удобрений следует считать Аминокат-30 (300 мл/га) с прибавкой урожая в среднем 0,95 т/га и Биоплант Флора (1 л/га) с прибавкой в 0,92 т/га (табл. 2).

^{2013 - 0,39}, по фактору A (гербицид) -0,15, по фактору B (удобрение) -0,19

^{2014 - 0.32}, по фактору A (гербицид) - 0.12, по фактору B (удобрение) - 0.16

^{2015 – 0,21,} по фактору А (гербицид) – 0,08, по фактору В (удобрение) – 0,11

В среднем за годы исследований наблюдалась зависимость действия органо-минеральных удобрений на повышение урожайности от климатических условий вегетационного периода.

Так, органо-минеральные удобрения Азосол (4 л/га) и Лигногумат (60 г/га) + Мивал Агро (10г/га) показали наибольшую прибавку урожая в засушливом 2015 г. и наименьшую – в дождливом 2013 г. Удобрения Нутрибор (1 кг/га), Биоплант Флора (1 л/га) и Аминокат-30 (300 мл/га), напротив, дали наибольшую прибавку в вегетационный период с повышенным количеством осадком и наименьшую – в засушливый 2015 г.

Основной целью возделывания масличного льна является получение максимально возможных сборов масла с единицы площади. Сорт ВНИИМК-620 отличался высокой масличностью, в среднем 46,0 %.

В опытах некорневая подкормка Нутримиксом (1 кг/га) повысила масличность семян на 0,4 %, Аминокатом-30 (300 г/га) — на 0,7 %, Лигногуматом (60 г/га) + Мивал Агро (10 г/га) и Азосолом (4 л/га) — на 0,2 % (табл. 2).

Таблица 2 — Масличность семян и жирнокислотный состав масла льна масличного сорта ВНИИМК- 620 в зависимости от удобрений

Вариант опыта	Маслич- ность,	Жирные кислоты, %				
	%	Олеиновая	Линолевая	Лино- леновая	Пальми-	
Контроль	45,8	18,1	16,2	55,9	5,3	
Нутримикс, 1 кг/га	46,2	17,7	16,4	56,0	5,5	
Аминокат-30 (0,3 л/га)	46,5	17,4	16,0	57,2	5,2	
Биоплант Флора, 1 л/га	45,6	18,4	16,5	55,4	5,4	
Лигногумат (60 г/га) +	46,0	18,2	16,2	55,9	5,3	
Мивал Агро (10 г/га)						
Нутрибор, 1 кг/га	45,4	17,6	16,2	56,6	5,3	
Азосол, 4 л/га	46,0	18,2	16,0	56,3	5,3	

Одним из показателей качества масла служит его жирнокислотный состав. Масло льна характеризовалось низким содержанием насыщенных жирных кислот.

Качество масла, судя по содержанию в нём жирных кислот, не изменялось под действием органо-минеральных удобрений. Повышение содержания олеиновой кислоты было отмечено на вариантах с применением Биопланта Флора (1 л/га) на 0.28 %, Лигногумата (60 г/га) + Мивал Агро (10 г/га) на 0.03 % и Азосола (4 л/га) на 0.07 %.

3.2 Влияние норм высева на продуктивность сортов льна масличного

На наступление основных фаз развития льна масличного норма высева не влияла. Повышение нормы высева увеличило продолжительность вегетационного периода на 2-4 дня.

Норма высева оказала существенное влияние на элементы структуры урожая. Результаты опыта показали, что чем выше норма высева, тем ниже показатели количества коробочек на растении, количество семян в коробочке и масса 1000 семян. У сорта Санлин лучшие результаты отмечены при норме высева в 6 млн. всхожих семян/га (табл. 3).

Таблица 3 – Элементы структуры урожая, в зависимости от нормы высева и сорта, средние за 2013-2015 гг.

Норма высева,		Элементы структуры урожая						
млн.	Сорт	Число коро-	Macca	Число семян	Число се-	Macca		
всхожих	Сорт	бочек	семян с	с одного	мян в ко-	1000 ce-		
семян /га		на одном	1 растения,	растения,	ро-бочке,	мян, г		
		растении,	ШТ.	ШТ.	шт.			
		ШТ.						
6	Санлин	14,3	0,66	113,2	8,0	6,0		
	ВНИИМК-620	10,8	0,53	66,3	6,2	8,0		
8	Санлин	12,2	0,54	93,4	7,7	5,8		
	ВНИИМК-620	9,4	0,54	64,8	7,0	8,2		
10	Санлин	10,3	0,35	59,8	6,1	5,8		
	ВНИИМК-620	9,7	0,42	52,4	5,6	8,1		
12	Санлин	9,7	0,30	53,6	5,8	5,6		
	ВНИИМК-620	8,0	0,32	39,9	5,3	8,0		
14	Санлин	10,2	0,28	52,3	5,4	5,4		
	ВНИИМК-620	7,0	0,28	35,8	5,3	7,7		

При увеличении нормы высева до 10 млн. всхожих семян/га количество коробочек снижалось на 4,0 шт., число семян в коробочке — на 1,9 шт., а масса 1000 семян на 0,2 г по сравнению с нормой высева в 6 млн. всхожих семян/га.

В среднем у сорта Санлин количество коробочек выше, чем у сорта ВНИИМК-620, в среднем на 2,3 шт. и варьирует от 9,7 до 14,3 шт. на растении. Самый высокий показатель числа коробочек был отмечен у сорта Санлин при норме высева 6 млн всхожих семян/га и составил 14,5 шт. на растение.

Максимальные результаты урожайности были достигнуты при норме высева в 8 млн. всхожих семян на гектар. У сорта Санлин этот показатель составил 2,33 т/га, а у сорта ВНИИМК-620 – 2,30 т/га (табл. 4).

Таблица 4 – Урожайность сортов льна масличного в зависимости от норм высева, средняя за 2013-2015 гг.

Сорт	Норма высева,	Урожайность, т/га Средняя уро-						
	млн. всхожих	2013 г.	2014 г.	2015 г.	жайность, т/га			
	семян /га							
Санлин	6	-	2,38	1,77	2,08			
	8	-	2,62	2,04	2,33			
	10	-	1,98	1,79	1,89			
	12	-	2,31	1,53	1,92			
	14	-	2,77	1,33	2,05			
ВНИИМК-620	6	1,15	1,87	2,10	1,71			
	8	1,86	2,61	2,42	2,30			
	10	1,93	2,48	2,37	2,26			
	12	1,53	2,33	2,30	2,05			
	14	1,64	2,38	2,09	2,04			
HCP ₀₅ т/га 2	HCP_{05} т/га $2014-0,47$, по фактору A (сорт) $-0,33$, по фактору B (норма высева) $-0,21$							
2015 – 0,35, по фактору А (сорт) – 0,25, по фактору В (норма высева) – 0,16								

В среднем за три года исследований, при норме высева в 6 и 8 млн. всхожих семян/га урожайность у сорта Санлин была выше урожайности сорта ВНИИМК-620 на 0,33 т/га; при норме высева в 10 и 12 млн всхожих семян/га урожайность сорта ВНИИМК-620 превышала урожайность сорта Санлин на 0,25 т/га. В среднем за годы исследования масличность составила 42-46 % (рис. 1).

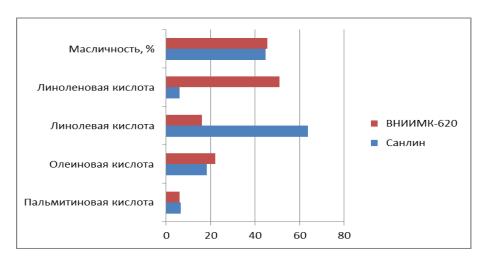


Рисунок 1 — Масличность и жирнокислотный состав семян льна масличного в зависимости от сорта, среднее за 2013-2015 гг.

Содержание линоленовой кислоты у сорта ВНИИМК-620 в 8,5 раза выше, чем у сорта Санлин.

3.3 Влияние сроков посева и гербицидной обработки на урожайность сортов льна масличного

В опытах, наибольшее распространение в посевах получили щирица запрокинутая, марь белая, вьюнок полевой, молочай лозный, осот полевой и просо куриное. Из яровых ранних встречались марь белая (Chenopodobium album), горец перечный (Persicaria hydropiper), галинсога мелкоцветковая (Galinsoga parviflora); из яровых поздних - щирица запрокинутая (Amaranthus retroflexus L.) и просо куриное (Echinochloa crus-galli). Корнеотпрысковые сорняки были представлены вьюнком полевым (Convolvulus arvensis), бодяком полевым (Cirsium arvense), осотом полевым (Sonchus oleraceus) и молочаем лозным (Euphorbiavirgate Waldst). Эфемеры были представлены звездчаткой средней (Stellaria media), а зимующие - пастушьей сумкой (Capsella bursa-pastoris).

Так, при посеве в первой декаде мая количество сорных растений снизилось, в среднем, на 26,1 шт./м², при использовании гербицида и на 96,9 шт./м², без использования гербицида, а при посеве во второй декаде мая — на 66,9 шт./м² при использовании гербицида и на 299,6 шт./м² без использования гербицида по сравнению со сроком посева в третьей декаде апреля (табл. 5).

Таблица 5 – Влияние сроков посева при использовании гербицида Агритокс на засорённость посевов сортов льна масличного, среднее за 2014-2016 гг.

	Кол-во сорняков, шт./м ²			Сырая масса	Масса од-	
Вариант	много-	однолет-	всего	сорняков, грамм/м²	ного сор- няка,грамм	
	летних	них		трамімі/м	II/Ku,I pullili	
сро	ок посева	а – III дека	ада апрел	Я		
Санлин + Агритокс	8,7	57,7	66,3	118,9	1,70	
Санлин, без гербицида	26,3	214,7	241	547,3	2,10	
ВНИИМК-620 + Агритокс	11,0	58,0	69,0	120,8	1,72	
ВНИИМК-620, без гербицида	26,7	212,0	238,7	542,9	2,14	
	срок пос	ева – I дек	ада мая			
Санлин + Агритокс	7,3	47,3	54,7	91,8	1,72	
Санлин, без гербицида	27,7	169,0	196,7	438,9	2,08	
ВНИИМК-620 + Агритокс	10,3	46,0	56,3	95,6	1,75	
ВНИИМК-620, без гербицида	31,0	168,3	199,3	457,4	2,15	
	рок посе	ева – II ден	када мая			
Санлин + Агритокс	8,0	31,7	39,7	52,5	1,28	
Санлин, без гербицида	25,3	93,3	121,7	239,5	1,88	
ВНИИМК-620 + Агритокс	6,0	33,3	39,3	53,3	1,27	
ВНИИМК-620, без гербицида	27,7	102,0	129,7	251,5	1,85	

Выявлена зависимость полевой всхожести от срока посева. При сроке посева в первой и второй декадах мая полевая всхожесть снижалась на 0,6 и 2,1 %

соответственно по сравнению с посевом в третьей декаде апреля. В среднем полевая всхожесть составила у сорта Санлин – 66,6 %, а у сорта ВНИИМК-620 – 67,8 %. Большое влияние срок посева оказал на сохранность растений льна масличного к уборке. При посеве в третьей декаде апреля и первой декаде мая разница в сохранности растений у сорта Санлин составила 2,5 % при использовании гербицида Агритокс.

Использование гербицида при посеве в третьей декаде апреля увеличило сохранность у сорта Санлин на 5 %, а у сорта ВНИИМК-620 – на 2,9 %. В среднем, сохранность у сорта Санлин при использовании Агритокса составила 79,9 %, а у ВНИИМК-620 – 78,9 %.

Максимальная урожайность отмечена в 2016 г. при посеве льна масличного сорта ВНИИМК-620 в третьей декаде апреля, при использовании гербицида Агритокс (1 л/га) – 2,6 т/га (табл. 6).

Таблица 6 – Урожайность льна масличного в зависимости от срока посева и использования гербицида сортов Санлин и ВНИИМК-620

Вариант	Использование	Урожайность, т/га			Средняя уро-		
	гербицида	2014	2015	2016	жайность, т/га		
срок посева – III декада апреля							
Санлин	Агритокс, 1 л/га	2,29	1,84	1,92	2,02		
	Без гербицида	1,90	1,58	1,76	1,75		
ВНИИМК-620	Агритокс, 1 л/га	2,07	2,49	2,60	2,39		
	Без гербицида	1,92	2,24	2,31	2,16		
срок посева – І декада мая							
Санлин	Агритокс, 1 л/га	1,80	1,70	1,84	1,78		
	Без гербицида	1,45	1,40	1,48	1,44		
ВНИИМК-620	Агритокс, 1 л/га	2,57	2,04	2,25	2,29		
	Без гербицида	2,30	1,66	1,93	1,96		
	срок г	осева – II	декада мая	[
Санлин	Агритокс, 1 л/га	1,68	1,32	1,60	1,53		
	Без гербицида	1,36	1,28	1,45	1,36		
ВНИИМК-620	Агритокс, 1 л/га	1,98	1,68	1,94	1,87		
	Без гербицида	1,58	1,48	1,69	1,58		

 HCP_{05} т/га

2014 - 0.22, по фактору A (сорт) - 0.11, по фактору B (гербицид) - 0.09, по фактору C (срок посева) - 0.09

2015 - 0.31, по фактору А (сорт) - 0.16, по фактору В (гербицид) - 0.13, по фактору С (срок посева) - 0.13

2016 – 0,41, по фактору А (сорт) - 0,20, по фактору В (гербицид) - 0,17, по фактору С (срок посева) - 0,17

За годы проведения исследований лучшим сроком посева для сортов льна – третья декада апреля, урожайность 2,02 т/га (Санлин), 2,39 т/га (ВНИИМК-620).

Анализ продуктивности растений льна сортов Санлин и ВНИИМК-620 показал изменения структурных элементов урожая в зависимости от изучаемых факторов. При этом такой показатель, как масса 1000 семян, увеличился в среднем по годам на 6 и 7% соответственно. Для мелкосемянных культур подобные изменения улучшают не только посевные, но и технологические свойства.

Выполненный статистический анализ выявил высокую существенную корреляционную связь обработки растений льна Агритоксом и массы 1000 семян. Так, коэффициент корреляции для изучаемых сортов составил 0,9, уравнение регрессии для сорта Санлин y = 0.6+0.94x, для сорта ВНИИМК-620 — уравнение регрессии y = 0.3 + x, где x — масса 1000 семян без обработки растений Агритоксом, y — при обработке.

3.4 Экономическая эффективность

Результаты расчёта уровня рентабельности показывают, что применение гербицидов в технологии возделывания льна масличного, является обязательным условием и обеспечивает высокий экономический эффект. Максимальная рентабельность в опытах с применением гербицидов на варианте с использованием Агритокса, 1 л/га составила 93,7%, что на 43,7 % выше чем на контрольном варианте. Близкие по значению результаты показала смесь гербицидов Хакер 60 г/га + Магнум 5 г/га, здесь рентабельность составила 87,3 %. Использование гербицида Хакер 120 г/га повысило рентабельность лишь на 4, 5% по сравнению с контролем.

Экономическая эффективность производства семян льна увеличивалась при применении всех исследуемых органо-минеральных и водорастворимых минеральных удобрений. Самые высокие показатели рентабельности отмечены на вариантах с применением Аминокат-30 (112,4-154,8 %) и Биоплант Флора (105,2-164,5 %).

Высокие экономические показатели отмечались при посеве с нормой высева в 8 млн. всхожих семян/га, как у сорта Санлин, так и у сорта ВНИИМК-620. У сорта ВНИИМК-620 рентабельность составила 134,2 %, у сорта Санлин – 153,9 %.

Максимальная рентабельность в опыте — при посеве льна масличного в третьей декаде апреля (сорт Санлин 126,8 %, сорта ВНИИМК-620 — 154,8 %).

В целом, нужно отметить, что разработанные элементы технологии возделывания льна масличного обеспечили высокий экономический эффект.

ЗАКЛЮЧЕНИЕ

1. Доказана возможность получения в почвенно-климатических условиях Тульской области на серых лесных среднеокультуренных почвах высокой,

стабильной урожайности льна масличного сортов ВНИИМК-620, Санлин в 2,0-2,5 т/га.

- 2. Гербицидные обработки обеспечили значительный прирост урожая семян льна по отношению к контролю. Максимально высокую прибавку урожая показали гербицид Агритокс ВК (1 л/га) 0,46 т/га и баковая смесь Магнум ВДГ (5 г/га) + Хакер ВРГ (60 г/га) 0,42 т/га. Прибавка на варианте с Хакером ВРГ (120 г/га) в среднем составила 0,07 т/га.
- 3. Применение гербицидов положительно отразилось на сохранности растений к уборке, повысив её на 10,8 %. Максимальный эффект в борьбе с сорной растительностью достигается при использовании гербицида Агритокс ВК, 1 л/га, снижение сырой массы сорных растений составило 357,5 г/м² по сравнению с контролем.
- 4. Некорневые обработки органо-минеральными удобрениями способствовали увеличению урожайности льна. Наиболее эффективным следует считать Аминокат-30 Ж (300 мл/га) с прибавкой урожая в среднем 0,95 т/га и Биоплант Флора ВР (1 л/га) с прибавкой в 0,92 т/га. Прибавка урожая от внесения Нутримикса ВГ (1 кг/га) составила 0,70 т/га, Лигногумата КРП (60 г/га) + Мивал Агро КРП (10 г/га) 0,55 т/га, Нутрибора ВГ (1 кг/га) 0,63 т/га, Азосола Ж (4 л/га) 0,62 т/га.
- 5. Оптимальной нормой высева как для сорта Санлин, так и для сорта ВНИИМК-620 нужно считать норму в 8 млн. всхожих семян/га. Урожайность при норме высева в 8 млн. всхожих семян/га максимальная и составила 2,33 т/га у сорта Санлин и 2,30 т/га у сорта ВНИИМК-620. Повышение нормы высева увеличивает продолжительность вегетационного периода льна масличного, в среднем, на два дня.
- 6. Лучший срок посева как для сорта Санлин, так и для сорта ВНИИМК-620 третья декада апреля (урожайность сорта Санлин 2,02 т/га, сорта ВНИИМК-620 2,39 т/га).
- 7. Масличность семян льна за годы исследований отмечена в пределах 42-46 %. Содержание линоленовой кислоты, приводящей к быстрому окислению масла, у сорта ВНИИМК-620 (50,763, %) в более чем 8 раз выше, чем у сорта Санлин (6,012%). При более высокой температуре увеличивается содержание линоленовой кислоты (у Санлин на 3,8 % (с 4,128 до 7,895 %), у ВНИИМК-620 на 10,2 % (с 45,649 до 55,876 %) одновременно понижается содержание олеиновой (у Санлин на 2,9 % (с 19,773 до 16,858 %), у ВНИИМК-620 на 10,2 % (с 25,925 до 18,134 %)). В целом, масло обоих сортов пригодно как для пищевых, так и для технических целей.
- 8. Экономическая эффективность производства семян льна увеличивалась при применении всех исследуемых органо-минеральных и водорастворимых минеральных удобрений. Самые высокие показатели рентабельности отмечены на вариантах с применением Аминокат-30 Ж (112,4-154,8 %) и Биоплант Флора ВР(105,2-164,5 %)

9. Высокие экономические показатели отмечались при посеве с нормой высева в 8 млн. всхожих семян/га, как у сорта Санлин, так и у сорта ВНИИМК-620. У сорта ВНИИМК-620 рентабельность составила 134,2 %, у сорта Санлин – 153,9 %. Максимальная рентабельность в опыте — при посеве льна масличного в третьей декаде апреля (сорт Санлин 126,8 %, сорта ВНИИМК-620 — 154,8 %). Все разработанные элементы технологии возделывания льна масличного обеспечили высокий экономический эффект.

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ

- 1. На серых лесных почвах Тульской области следует внедрять технологию получения урожая в 2,0-2,5 т/га льна масличного сортов Санлин и ВНИИМК-620.
- 2. Лучшей нормой высева для сортов льна масличного в условиях региона следует считать норму в 8 млн. всхожих семян/га, а лучший срок посева культуры третью декаду апреля.
- 3. При выращивании льна масличного для борьбы с сорняками следует применять экономически эффективный гербицид Агритокс, 1 л/га и баковую смесь гербицидов Хакер, 60 г/га + Магнум, 5 г/га.
- 4. Для получения высоких урожаев льна масличного рекомендуется применение органо-минерального удобрения Биоплант Флора, 1 л/га и Аминоката-30, 0,3 л/га.

СПИСОК РАБОТ ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

В изданиях, рекомендованных ВАК:

- 1. **Егорова, Н.С.** Эффективность действия гербицидов и органоминеральных удобрений в посевах льна масличного в условиях Тульской области / Н.С. Егорова // Вестник Рязанского государственного агротехнологического университета имени П.А. Костычева, 2014. №1. С.109-112.
- 2. Виноградов, Д.В. Оценка сорта Санлин льна масличного в условиях Тульской и Рязанской областей / Д.В. Виноградов, А.В. Поляков, **Н.С. Егорова**, А.А. Кунцевич // Вестник Рязанского государственного агротехнологического университета имени П.А. Костычева, 2015 № 3 (27). С.5-9.
- 3. Виноградов, Д.В. Влияние нормы высева и срока посева на урожайность сортов Санлин и ВНИИМК-620 в условиях Тульской области / Д.В. Виноградов, **H.С. Егорова**, Г.Д. Гогмачадзе // АгроЭкоИнфо, 2016. №3(25). [Электронный ресурс: http://agroecoinfo.narod.ru/journal/index.html]
- 4. Виноградов, Д.В. Урожайность льна масличного сорта ВНИИМК-620 в зависимости от применения гербицидов и органоминеральных удобрений / Д.В. Виноградов, **H.С. Егорова**, Г.Д. Гогмачадзе // АгроЭкоИнфо, 2016. №4(26). [Электронный ресурс: http://agroecoinfo.narod.ru/journal/index.html]
- 5. **Егорова, Н.С.** Возделывание льна масличного в Тульской области / Н.С. Егорова, Д.В. Виноградов // АгроЭкоИнфо, 2016. №4(26). [Электронный ресурс: http://agroecoinfo.narod.ru/journal/index.html]
- 6. Бышов, Н.В. Особенности уборки масличных культур и конструктивные особенности комбайнов / Н.В. Бышов, Д.В. Виноградов, **Егорова Н.С.** // Международный технико-экономический журнал, 2017 №1 С.82-87.

1. В сборниках научных трудов, конференций, монографии:

- 7. Виноградов, Д.В. Перспективы возделывания льна масличного сорта Санлин в южной части нечерноземной зоны России / Д.В. Виноградов, **Н.С. Егорова**, А.В. Поляков //Почвы Азербайджана: генезис, география, мелиорация, рациональное использование и экология: материалы межд. научной конференции. Баку-Габала, Азербайджан: НАН Азербайджана, 2012. С. 1025-1027.
- 8. Виноградов, Д.В. Возделывание новых сортов льна масличного в условиях Нечерноземной зоны / Д.В. Виноградов, А.А. Кунцевич, **Н.С. Егорова** // Экологическое состояние природной среды и научно-практические аспекты современных мелиоративных технологий: сб. науч. тр. Москва-Рязань, 2012. С.144-145.
- 9. Кунцевич, А.А. Использование гербицидов в посевах льна масличного / А.А. Кунцевич, **Н.С. Егорова**, Д.В. Виноградов // Научно-практические аспекты технологий возделывания переработки масличных культур: матер. межд. конф. Рязань: РГАТУ, 2013. С. 118-119.

- 10. Виноградов, Д.В. Приемы повышения продуктивности льна масличного в условиях Тульской области / Виноградов Д. В., **Егорова Н.С.** // Инновационные технологии производства, хранения и переработки продукции растениеводства: материалы Международной юбилейной научно-практической конференции, Рязань, 30-31 января 2014 г. Рязань: РГАТУ, 2014. С.76-78.
- 11. Виноградов, Д.В. Особенности использования гербицидных и органоминеральных обработок в посевах льна в условиях Тульской области / Д.В. Виноградов, **H. C. Егорова** // Развитие АПК на основе рационального природопользования: экологический, социальный и экономический аспекты: материалы межд. науч.-практич. конф., 26 декабря 2014 г. Полтава, Украина: ПГАА, 2014. С.115-122.
- 12. Виноградов, Д.В. Особенности использования гербицидных и органоминеральных обработок в посевах льна в условиях Тульской области / Д.В. Виноградов, **H.С. Егорова** // Развитие АПК на основе рационального природопользования. Коллективная монография. LAP LAMBERT Akademic Publishing, Germany, 2015. C.118-125.
- 13. **Егорова, Н.С.** Продуктивность льна масличного сорта ВНИИМК-620 при использовании гербицидных и органоминеральных обработок / Н. С. Егорова // Технологические аспекты возделывания сельскохозяйственных культур: межд. науч.-практич. конф. Горки, Беларусь: БГСХА, 2015. С. 42-44
- 14. Виноградов, Д.В. Методические рекомендации по возделыванию льна масличного в Рязанской и Тульской областях. Методическая разработка. / Д.В. Виноградов, А.А. Кунцевич, **Н.С. Егорова** // Рязань: РГАТУ, 2015. 23 с.
- 15. Стародубцев, В.В. Особенности возделывания масличных культур в Тульской области / В.В. Стародубцев, **Н.С. Егорова** // Научно-практические аспекты технологий возделывания и переработки масличных и эфиромасличных культур: материалы межд. научно-практической конф., 3-4 марта 2016. Рязань: РГАТУ, 2016. С. 252-255.
- 16. Виноградов, Д.В. Сравнительная оценка сортов льна масличного Санлин и ВНИИМК-620 в условиях Тульской области / Д.В. Виноградов, **Н.С. Егорова** // Научно-практические аспекты технологий возделывания и переработки масличных и эфиромасличных культур: материалы межд. научно-практической конф., 3-4 марта 2016. Рязань: РГАТУ, 2016. С.79-82.
- 17. **Егорова, Н.С.** К проблеме засорённости посевов льна масличного / Н.С. Егорова, А.А. Кунцевич // Экологическое состояние природной среды и научно-практические аспекты современных ресурсосберегающих технологий в АПК : материалы междунар. науч.-практ. конф. 16-17 февраля 2017. Рязань: РГАТУ, 2017. Ч.1— С.150-153.
- 18. Егорова, Н.С. Качественные показатели семян масличного льна в зависимости от сорта / Н.С. Егорова., А.А. Кунцевич // Экологическое состояние природной среды и научно-практические аспекты современных ресурсосберегающих технологий в АПК : материалы междунар. науч.-практ. конф.,

- 16-17 февраля 2017. Рязань: РГАТУ, 2017. Ч.1– С.153-156.
- 19. Кунцевич, А.А. Использование гербицидов в посевах льна масличного / А.А. Кунцевич, **Н.С. Егорова** // Экологическое состояние природной среды и научно-практические аспекты современных ресурсосберегающих технологий в АПК : материалы междунар. конф., 16-17 февраля 2017. Рязань: РГАТУ, 2017. Ч.1— С.224-230.
- 20. Егорова, Н.С. Продуктивность льна масличного сортов ВНИИМК-620 и Санлин в зависимости от норм высева / Егорова Н. С. Виноградов Д.В. // Технологические аспекты возделывания сельскохозяйственных культур: материалы X междунар. науч.- практ. конф., 20-21 июня 2017. Горки, Беларусь: БГСХА, 2017. С.84-87.
- 21. **Егорова, Н.С.** Агроэкологическое использование пестицидов и удобрений в посевах льна масличного / Н.С. Егорова, Н.В. Бышов // Здоровая окружающая среда основа безопасности регионов: сборник трудов I международного экологического форума в г. Рязани, 11-13 мая 2017. Рязань: РГУ имени С.А. Есенина РГАТУ. Т.1. С.204-207.
- 22. Виноградов, Д. В. Действие листовых подкормок органоминеральными удобрениями на урожайность льна масличного в условиях Тульской области. / Д. В. Виноградов, **Н. С. Егорова,** Е. И. Лупова // III Международный пенитенциарный форум «Преступление, наказание, исправление» (к 20-летию вступления в силу Уголовно исполнительного кодекса Российской Федерации) : сб. тез. выступ. и докл. участников (г. Рязань, 21–23 ноября 2017 г.) : в 7 т. Рязань : Академия ФСИН России, 2017. С. 199-204.

Бумага офсетная. Гарнитура Тітея. Печать лазерная
Усл. печ. л. 1,5 Тираж 200 экз.
Подписано в печать 14.02.2018 г
Федеральное государственное бюджетное образовательное учреждение
высшего образования
«Рязанский государственный агротехнологический университет
имени П. А. Костычева»
390044 г. Рязань, ул. Костычева, 1
Отпечатано в издательстве учебной литературы и
учебно-методических пособий
ФГБОУ ВО РГАТУ
390044 г. Рязань, ул. Костычева, 1